Point of care testing (POCT): meaning, definition, devices

Providers of healthcare make efforts to treat patients quickly and to achieve the best possible outcome.

Quick and accurate test results can help to provide the best quality patient care and allow a health professional to make better and more effective decisions with their patient. Point-of-care testing, also known as near-patient testing, typically means carrying out a test using a device or test kit in the presence of the patient and without the need to send a sample to a laboratory.

Many new point-of-care devices utilise technological advancement to improve the quality of care.

What is point-of-care testing?

Point-of-care testing, often abbreviated to POC testing, is medical testing done at or near the point of care. In this context, POC refers to the location of the patient.

Sending all samples and specimens away to be processed at medical laboratories means waiting a long time for results. This can lead to wasted time in critical contexts or patients being treated without their care team having full information about their needs.

Instead, POC testing makes it far easier for results to be obtained quickly and reliably. With these results available, medical staff can more easily make informed decisions about a patient’s treatment and care.

POC testing vs laboratory testing: pros and cons

The main advantage of point-of-care testing is the shorter time it takes to obtain a result. Typically, results may also be presented in a way that is easier to understand, but this is not always the case and results may still require a healthcare professional to interpret them safely.

POC testing can also be performed by people who have not had formal laboratory training. This includes nurses, doctors, paramedics and testing by patients themselves. There are many kinds of near-patient testing, including malaria antigen testing, pregnancy tests, blood glucose monitoring, urinalysis and many more.

These tests often require relatively easy sample collection such as body fluids (e.g. saliva or urine) or finger-prick blood. Together with other portable medical equipment, such as thermometers or blood pressure devices, they can facilitate rapid and convenient medical assessment.

However, POC testing can have disadvantages. For example, based on the available technology used in the device, studies have shown that errors may be more frequent with POC testing than with laboratory testing. This can arise because the POC testing environment is generally less controlled than laboratory conditions and the results can be at higher risk of external interference than laboratory processes, which can lead to inaccuracy.

POC approaches can also be more costly than laboratory based testing. A study from 1995 demonstrated that the cost of POC testing for glucose was anywhere from 1.1 to 4.6 times higher than the same test in the laboratory. There are hidden costs that may often be overlooked, such as those associated with a quality control program or equipment upkeep. However, other kinds of hidden costs such as buildings, staff and overheads can apply to laboratory testing as well.

Nonetheless, the immediacy and convenience of POC testing can balance the increased costs. Rapid results can allow a treatment plan to be put into effect quickly, and where time is critical for better care, this can make a big difference. Even where time is not critical and is more a matter of convenience, being able to move on with diagnosis and treatment is almost always of benefit to the patient. In some circumstances, a rapid result can help to allow a safe medical discharge from hospital, shortening the length of stay and helping to reduce costs of care. There are also examples of wearable monitoring and testing devices, which can decrease the rate of readmittance to hospital, by providing telemetry results to the clinic or information that patients themselves can use.

As technology continues to develop and point-of-care testing devices continue to improve, the issues of accuracy associated with POC testing are likely to resolve. As more experience and understanding is gained with using point-of-care devices, the benefits of quick results and ease of testing are likely to come to be seen as significant and desirable as well as routine.

Hematology point-of-care devices

point-of-care testing
OLO POC devices

Point-of-care testing has become popular in many medical subfields, including hematology. In recent years, continued progress in medical device engineering has resulted in more advanced POC testing devices.

Over the past several decades, the POC hemoglobin meter has been a popular and useful device. However, when compared with a laboratory complete blood count, this indicates only a small part of the useful or important information available from a full analysis of the blood cells.

More recently, the use of a range of techniques in combination with advanced digital technology has allowed the development of a point-of-care complete blood count analyser. Among other approaches to achieve this, engineers have employed digital microscopy and machine vision using near‐infrared spectroscopy and multiple wavelength light absorption.

This means that the complete blood count can now be carried out as a point-of-care test with the same accuracy as traditional laboratory reports, with less invasive sample collection, greater speed and more convenience.

Complete blood counts are just one of many tests that POC testing devices are capable of:

Other common hematology point-of-care testing devices include:

  • Prothrombin time analysers, for evaluating blood clots.
  • aPTT testing, for haemostatic assessment.
  • D-dimer testing, to rule out pulmonary embolism or DVT.
  • Viscoelastic assays, for trauma and obstetrics.
  • Activated clotting time testing, for monitoring heparin levels.
  • Malarial antigen testing, for screening for malaria.

Today, the most commonly used and modern point-of-care testing devices have been shown to produce accurate and reliable hematology results, promoting better quality medical care across a wide range of conditions.